Ecliptek泛音石英晶體如何工作?,美國日蝕公司是一家集設計和銷售為一體化的元器件制造商,主要向廣泛應用市場提供極其具有價值的石英晶體產品為主,通過自身的努力與拼搏,研發大量高質量低成本石英晶振,同時也保證產品的品質,隨著產品的快速推出市場,并得到廣大用戶的支持與信賴,使得日蝕公司發展日趨強大,而在激烈的市場斗爭之中,日蝕公司不斷調整自我的定位,對于小型化的石英晶體產品有了更多的見解,也十分樂意分享更多關于產品方面的知識,與用戶保持著共同成長,也因此吸引了更多同頻的合作伙伴加入日蝕公司。
在當今世界,快速流暢的數據傳輸至關重要。網絡和服務器系統被設計成以閃電般的速度處理和轉發信息。為了實現這一點,許多應用依賴于三位數兆赫茲(MHz)范圍內的頻率。
這樣高的頻率是不能用AT晶體的基音產生的。盡管石英盤具有40到50兆赫基頻是可行的它們的生產涉及相當大的努力和相應的成本。因此,“泛音晶體”通常用于20兆赫以上的頻率。
每個石英坯都有其基本頻率。除了這個“基音”,每個石英盤還有幾個泛音。當電壓施加在石英上時,石英以其基本音調振蕩。它的泛音也在這個過程中被觸發,但它們的信號明顯弱于基音。事實上,在大多數情況下,泛音信號只會產生正常的相位噪聲。Ecliptek泛音石英晶體如何工作?
通過振蕩器電路的巧妙構造,可以激勵石英的泛音而不是基音。因此,為了放大石英的泛音信號,在振蕩器電路中增加了一個附加的諧振電路。
這項技術允許工程師從壓電石英晶體中“擠出”遠高于其基頻的頻率。例如,如果石英以20MHz的基音振蕩,第三泛音以60MHz振蕩,第五泛音以100MHz振蕩。由于振蕩器電路的電子特性,泛音只能在奇數整數范圍內被激發。
剩下的問題是關于泛音石英振蕩的形狀。你可以把泛音振蕩想象成晶體基波振蕩的倍數。
厚度剪切振子在其基音中的振蕩
讓我們拿著厚度剪切振蕩器舉個例子:在電壓下,石英的頂部和底部在基音中向相反的方向移動。但是在泛音中,不僅是石英的上下兩面在振蕩,它內部的分子層也在振蕩。這些層也向相反的方向移動,就像水晶在基礎音調中的頂部和底部一樣。石英貼片晶振不僅在它的外部振動,也可以說“在它自身”振動。
形象地說,人們可以把泛音石英想象成一個連接在長鏈上的鐘擺。在基音中,只有鐘擺會擺動,但在泛音中,每個鏈節也會擺動。
受泛音驅動的石英可以產生頻率高達250MHz,從而為通信技術中的快速數據傳輸創造了完美的基礎。
A fast and smooth data transmission is critical in today’s world. Network and server systems are designed to process and forward information at lightning fast speeds. To achieve this, many of these applications depend on frequencies in the three-digit megahertz (MHz) range.
制造商零件編號
供應商
描述
工作溫度
EB3250AYA08-8.000M TR
Ecliptek晶振
CRYSTAL 8.0000MHZ 8PF SMD
-40°C ~ 125°C
E1SJA18-6.000M TR
Ecliptek晶振
CRYSTAL 6.0000MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-18.432M TR
Ecliptek晶振
CRYSTAL 18.4320MHZ 18PF SMD
-40°C ~ 85°C
E1SFA18-4.000M TR
Ecliptek晶振
CRYSTAL 4.0000MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-14.31818M TR
Ecliptek晶振
CRYSTAL 14.31818MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-6.144M TR
Ecliptek晶振
CRYSTAL 6.1440MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-28.63636M TR
Ecliptek晶振
CRYSTAL 28.63636MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-13.000M TR
Ecliptek晶振
CRYSTAL 13.0000MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-19.6608M TR
Ecliptek晶振
CRYSTAL 19.6608MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-9.8304M TR
Ecliptek晶振
CRYSTAL 9.8304MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-32.000M TR
Ecliptek晶振
CRYSTAL 32MHZ 18PF SMD
-
EA2025MA10-16.000M TR
Ecliptek晶振
CRYSTAL 16.0000MHZ 10PF SMD
-40°C ~ 85°C
EA2025MA10-32.000M TR
Ecliptek晶振
CRYSTAL 32.0000MHZ 10PF SMD
-40°C ~ 85°C
E1WCDA12-32.768K
Ecliptek晶振
CRYSTAL 32.7680KHZ 12.5PF TH
-10°C ~ 60°C
E1SJA18-18.000M TR
Ecliptek晶振
CRYSTAL 18.0000MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-20.000M TR
Ecliptek晶振
CRYSTAL 20.0000MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-14.7456M TR
Ecliptek晶振
CRYSTAL 14.7456MHZ 18PF SMD晶振
-40°C ~ 85°C
E1SCA18-7.3728M TR
Ecliptek晶振
CRYSTAL 7.3728MHZ 18PF SMD
-40°C ~ 85°C
E1SEA18-16.000M TR
Ecliptek晶振
CRYSTAL 16.0000MHZ 18PF SMD
-20°C ~ 70°C
E1SEA18-12.000M TR
Ecliptek晶振
CRYSTAL 12.0000MHZ 18PF SMD
-20°C ~ 70°C
E1SJA18-10.000M TR
Ecliptek晶振
CRYSTAL 10.0000MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-12.000M TR
Ecliptek晶振
CRYSTAL 12.0000MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-11.0592M TR
Ecliptek晶振
CRYSTAL 11.0592MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-8.000M TR
Ecliptek晶振
CRYSTAL 8.0000MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-16.000M TR
Ecliptek晶振
CRYSTAL 16.0000MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-3.579545M TR
Ecliptek晶振
CRYSTAL 3.579545MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-4.194304M TR
Ecliptek晶振
CRYSTAL 4.194304MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-16.9344M TR
Ecliptek晶振
CRYSTAL 16.9344MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-5.000M TR
Ecliptek晶振
CRYSTAL 5.0000MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-13.500M TR
Ecliptek晶振
CRYSTAL 13.5000MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-9.216M TR
Ecliptek晶振
CRYSTAL 9.2160MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-12.288M TR
Ecliptek晶振
CRYSTAL 12.2880MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-4.500M TR
Ecliptek晶振
CRYSTAL 4.5000MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-15.000M TR
Ecliptek晶振
CRYSTAL 15.0000MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-4.433619M TR
Ecliptek晶振
CRYSTAL 4.433619MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-16.384M TR
Ecliptek晶振
CRYSTAL 16.3840MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-6.7458M TR
Ecliptek晶振
CRYSTAL 6.7458MHZ 18PF SMD
-40°C ~ 85°C
E1SJA18-15.360M TR
Ecliptek晶振
CRYSTAL 15.3600MHZ 18PF SMD
-40°C ~ 85°C
E1SDA18-25.000M TR
Ecliptek晶振
CRYSTAL 25.0000MHZ 18PF SMD
0°C ~ 70°C
E1SJA18-4.9152M TR
Ecliptek晶振
CRYSTAL 4.9152MHZ 18PF SMD
-40°C ~ 85°C
E1SGA18-25.000M TR
Ecliptek晶振
CRYSTAL 25.0000MHZ 18PF SMD
0°C ~ 70°C
EA2532QA18-26.000M TR
Ecliptek晶振
CRYSTAL 26.0000MHZ 18PF SMD
-40°C ~ 85°C
EA2532QA18-20.000M TR
Ecliptek晶振
CRYSTAL 20.0000MHZ 18PF SMD
-40°C ~ 85°C
EA2532LA18-30.000M TR
Ecliptek晶振
CRYSTAL 30.0000MHZ 18PF SMD
-40°C ~ 85°C
EA2532QA18-13.560M TR
Ecliptek晶振
CRYSTAL 13.5600MHZ 18PF SMD
-40°C ~ 85°C
EB2532YA12-24.000M TR
Ecliptek晶振
CRYSTAL 24.0000MHZ 12PF SMD
-40°C ~ 125°C
EB1216JA10-26.000M TR
Ecliptek晶振
CRYSTAL 26.0000MHZ 10PF SMD
-40°C ~ 85°C
EB1620JA10-24.000M TR
Ecliptek晶振
CRYSTAL 24.0000MHZ 10PF SMD
-40°C ~ 85°C
EA2025JA18-16.000M TR
Ecliptek晶振
CRYSTAL 16.0000MHZ 18PF SMD
-40°C ~ 85°C
E1WSDA12-32.768K TR
Ecliptek晶振
CRYSTAL 32.7680KHZ 12.5PF SMD
-10°C ~ 60°C
EA2025JA18-32.000M TR
Ecliptek晶振
CRYSTAL 32.0000MHZ 18PF SMD
-40°C ~ 85°C
EA2025JA10-24.000M TR
Ecliptek晶振
CRYSTAL 24.0000MHZ 10PF SMD
-40°C ~ 85°C
EB3250JA12-10.000M TR
Ecliptek晶振
CRYSTAL 10.0000MHZ 12PF SMD
-40°C ~ 85°C
EB3250AYA08-16.000M TR
Ecliptek晶振
CRYSTAL 16.0000MHZ 8PF SMD
-40°C ~ 125°C
EB3250YA12-12.000M TR
Ecliptek晶振
CRYSTAL 12.0000MHZ 12PF SMD
-40°C ~ 125°C
EB3250AYA08-10.000M TR
Ecliptek晶振
CRYSTAL 10.0000MHZ 8PF SMD
-40°C ~ 125°C
E1SJA18-24.000M TR
Ecliptek晶振
CRYSTAL 24.0000MHZ 18PF SMD
-40°C ~ 85°C
EA2532LA18-25.000M TR
Ecliptek晶振
CRYSTAL 25.0000MHZ 18PF SMD
-40°C ~ 85°C
EA2532UA12-24.000M TR
Ecliptek晶振
CRYSTAL 24.0000MHZ 12PF SMD
-40°C ~ 85°C
EB2532JA12-30.000M TR
Ecliptek晶振
CRYSTAL 30.0000MHZ 12PF SMD
-40°C ~ 85°C
EB2532JA12-18.432M TR
Ecliptek晶振
CRYSTAL 18.4320MHZ 12PF SMD
-40°C ~ 85°C
EB2532YA12-18.432M TR
Ecliptek晶振
CRYSTAL 18.4320MHZ 12PF SMD
-40°C ~ 125°C
EB1216JA10-25.000M TR
Ecliptek晶振
CRYSTAL 25.0000MHZ 10PF SMD
-40°C ~ 85°C
EB1216JA10-32.000M TR
Ecliptek晶振
CRYSTAL 32.0000MHZ 10PF SMD
-40°C ~ 85°C
EB3250JA12-16.000M TR
Ecliptek晶振
CRYSTAL 16.0000MHZ 12PF SMD
-40°C ~ 85°C
EB3250YA12-16.000M TR
Ecliptek晶振
CRYSTAL 16.0000MHZ 12PF SMD
-40°C ~ 125°C
EB3250YA12-10.000M TR
Ecliptek晶振
CRYSTAL 10.0000MHZ 12PF SMD
-40°C ~ 125°C
EB3250YA12-24.000M TR
Ecliptek晶振
CRYSTAL 24.0000MHZ 12PF SMD
-40°C ~ 125°C
E3WSDC12-32.768K TR
Ecliptek晶振
CRYSTAL 32.7680KHZ 12PF SMD
-40°C ~ 85°C
E1SBA18-3.6864M TR
Ecliptek晶振
CRYSTALS 3.6864MHZ 50PPM 18PF PA
-
E1SBA18-7.3728M TR
Ecliptek晶振
CRYSTALS 7.3728MHZ 50PPM 18PF PA
-
E1SBA18-8.000M TR
Ecliptek晶振
CRYSTALS 8.000MHZ 50PPM 18PF PAR
-
E1SHA18-11.0592M TR
Ecliptek晶振
CRYSTALS 11.0592MHZ 15PPM 18PF P
-
E1SCA18-3.6864M TR
Ecliptek晶振
CRYSTALS 3.6864MHZ 50PPM 18PF PA
-
E1SFA18-8.000M TR
Ecliptek晶振
CRYSTALS 8.000MHZ 30PPM 18PF PAR
-
E1SHA18-7.3728M TR
Ecliptek晶振
CRYSTALS 7.3728MHZ 15PPM 18PF PA
-
Such high frequencies cannot be generated with an AT-crystal in the fundamental tone. Although quartz discs with a fundamental frequency of 40 to 50MHz are feasible, their production involves considerable effort and corresponding costs. For this reason, “overtone crystals” are usually used for frequencies above 20 megahertz.
Every quartz blank has its basic frequency. Besides this “fundamental tone”, each quartz disc has several overtones. When electric voltage is applied to the quartz, it oscillates on its fundamental tone. Its overtones are also triggered in this process, but their signal is significantly weaker than that of the fundamental tone. In fact, most of the time the overtone signal results in nothing more than normal phase noise.
By clever construction of the oscillator circuit, it is possible to actuate the overtone of the quartz instead of the fundamental tone. Therefore, an additional resonant circuit is added to the oscillator circuit in order to amplify the overtone signal of the quartz.
This technique allows engineers to “squeeze” frequencies far above its fundamental tone out of a quartz crystal. For example, if a quartz oscillates in the fundamental tone at 20MHz, the third overtone oscillates at 60MHz and the fifth overtone oscillates at 100MHz. Due to the electronic properties of the oscillator circuit, the overtones can only be stimulated in the odd integer range.
The remaining question is about the shape of an overtone quartz’s oscillation. You can imagine the overtone oscillation as a multiple of the crystal’s fundamental oscillation.
Let’s take the thickness shear oscillator as an example: Put under voltage, top and bottom of the quartz move in opposite directions in the fundamental tone. However, in the overtone, not only the upper and lower sides of the quartz oscillate, but also the molecular layers inside it. These layers also move in opposite directions, just like the crystal’s top and bottom in the fundamental tone. The quartz does not only vibrate on its outside, but “in itself”, so to speak.
Figuratively speaking, one can visualize an overtone quartz like a pendulum attached to a long chain. In the fundamental tone, only the pendulum swings, but in the overtone each individual chain link swings as well.
A quartz driven by its overtone can generate a frequency of up to 250MHz, thus creating the perfect base for fast data transmission in communication technology.