彼得曼32.768KHZ晶振系列,彼得曼作為行業(yè)頂尖的供應商,一直以來走向技術的最前沿,同時,彼得曼技術公司努力為每一種產品和服務提供最高的質量、安全性、靈活性和客戶滿意度。作為一個充滿活力的市場環(huán)境中的創(chuàng)新者,我們致力于成為客戶可靠的戰(zhàn)略合作伙伴。憑借我們廣泛的產品和服務、不折不扣的質量和卓越的性價比,我們支持他們開發(fā)具有競爭力的高效應用。
PETERMANN-TECHNIK提供最廣泛的32.768kHz解決方案組合,包括石英晶體和硅振蕩器以及RTC,推薦用于要求低成本、高性能、高質量產品的所有應用。
32.768kHz石英晶體可在-40/+85°C的標準溫度范圍內以10至20ppm的頻率容差在25°C下交付,根據AECQ200或AECQ100的汽車解決方案可應要求提供。
32.768kHz微型貼片硅振蕩器推薦用于電池驅動解決方案,如藍牙低功耗、物聯網、可穿戴設備、RTCs、移動通信、智能計量、智能住宅、商業(yè)、醫(yī)療和工業(yè)應用等。2.0x1.2mm外殼允許使用相同的焊盤布局尺寸直接替換2012系列的石英晶體。
SMD硅32.768kHz振蕩器具有獨特的超低功耗特性,功耗小于1.0 A,頻率容差非常小,從5ppm到10ppm,溫度穩(wěn)定性優(yōu)于石英晶體和32.768kHz石英晶體振蕩器,可提供高精度32.768kHz時鐘,功耗極低,價格低廉。
標準外殼尺寸為1.5x0.8mm毫米或2.0x1.2mm毫米,視型號而定。與石英晶體不同,ULPO和ULPPO系列能夠通過LVCMOS兼容輸出信號為多個IC(MCU、RTC、ble等)提供時鐘。)同時,增加了更大的元件放置靈活性,并消除了外部負載電容,從而節(jié)省了額外的元件數量、電路板空間和成本(PCB、組裝、搬運、庫存等)。).例如,與使用32.768kHz石英晶體相比,在BLE解決方案中使用ULPO或ULPO可節(jié)省約60%的系統(tǒng)能源。
近幾年來,現代計量應用的時間要求大幅提高?,F代計量應用的通常要求是7年后時間偏移1小時。應用的工作溫度范圍也應符合該值。最多1小時。7年后對應于32,768 kHz下16 ppm絕對值的頻率容差。傳統(tǒng)的32,768 kHz振蕩晶體不再可能滿足這些要求。
一方面,這是因為32,768kHz僅在+25°C時具有10ppm的頻率容差,另一方面,在-40/+85°C溫度范圍內的溫度穩(wěn)定性高于-180ppm。此外,老化約。計算精度時,必須考慮10年后的30ppm。最差情況下,32,768kHz晶振的最大頻率穩(wěn)定性為+40/-220ppm(包括+25°C時的調整、溫度穩(wěn)定性和10年后的老化)。外部電路電容必須能夠補償由要同步的ic振蕩器級的內部電容和雜散電容引起的任何系統(tǒng)頻率偏移。為32.768K晶振選擇無外部電路電容的布局包含很大的風險,因為在批量生產期間,32,768晶振的精度既不能校正也不能調整以適應突然變化的PCB條件。最初,32,768英寸晶體的交叉角度是為手表的最佳精度而設計的,而不是為如今使用它的大多數應用而設計的。彼得曼32.768KHZ晶振系列.
為了滿足高度精確的時間要求,作為計時專家,我們推出了ULPPO系列超低功耗32.768K有源晶振。該振蕩器可以在1.5到3.63 VDC的VDD范圍內的每個電壓下工作。額定功耗為0.99 A。在-40/+85°c的溫度范圍內,ULPPOs的溫度穩(wěn)定性為±5 ppm。頻率穩(wěn)定性(輸送精度加上溫度穩(wěn)定性)為10 ppm,20年后的老化為±2ppm。因此,ULPPOs的最大總穩(wěn)定性為12ppm,包括10年后的老化。這些是行業(yè)最佳參數。
超小型外殼的電路不需要外部電路電容(外殼面積:1.2mm2).ULPPO中安裝的IC輸入級獨立過濾電源電壓。與晶體相比,ULPPOs節(jié)省了印刷電路板上的大量空間,因此可以增加封裝密度,并且可以設計更小的印刷電路板。幅度的調整進一步降低了ULPPO的功耗。
石英晶體振蕩器32.768千赫
Product Name
Package
Product Category
Dimensions in mm (W x D x H)
Frequency Range
M1610 (AVAILABLE IN STOCK)
SMD Ceramic/2pad
kHz Crystal
1.6 x 1.0 x 0.45 mm
32.768 kHz
M2012 (AVAILABLE IN STOCK)
SMD Ceramic/2pad
kHz Crystal
2.0 x 1.2 x 0.55 mm
32.768 kHz
M3215 (AVAILABLE IN STOCK)
SMD Ceramic/2pad
kHz Crystal
3.2 x 1.5 x 0.75 mm
32.768 kHz
M3215HT (High Temp. -40/+125°C)
SMD Ceramic/2pad
kHz Crystal
3.2 x 1.5 x 0.75 mm
32.768 kHz
M3215RR (50 kΩ - low power design)
SMD Ceramic/2pad
kHz Crystal
3.2 x 1.5 x 0.75 mm
32.768 kHz
M3215A (AEC-Q200)
SMD Ceramic/2pad
kHz Crystal
3.2 x 1.5 x 0.75 mm
32.768 kHz
Product Name | Package | Dimensions in mm (W x D x H) | Frequency Range | Supply Voltage | Output Signal | |
---|---|---|---|---|---|---|
![]() |
SPXO | SMD Ceramic/4pad | 2.5 x 2.0 x 1.0 mm | 32.768 kHz | VDC | HCMOS/CMOS |
![]() |
SPXO | SMD Ceramic/4pad | 3.2 x 2.5 x 1.2 mm | 32.768 kHz | VDC | HCMOS/CMOS |
硅振蕩器超低功率32.768千赫
Product Name | Package | Dimensions in mm (W x D x H) | Frequency Range | |
---|---|---|---|---|
![]() |
ULPO-RB1 | SMD QFN/4pad | 1.5 x 0.8 | 32.768 kHz |
![]() |
ULPO-RB2 | SMD QFN/4pad | 2.0 x 1.2 | 32.768 kHz |
對于空間計算,還必須考慮印刷電路板上晶體的兩個外部電路電容。由于有兩個外部電路電容,即使最小的32,768kHz晶振也比ULPPOs需要更多的PCB空間。
此外,非常小的32,768kHz晶體具有非常高的電阻,這通常不能被要同步的振蕩器級安全地克服,因為要同步的IC或RTC的振蕩器級也具有非常高的容差。因此,現場可能會出現突然的響應時間問題,這可以通過ULPPOs排除。因此,在任何情況下,使用ULPPOs都可以安全運行應用程序。
振蕩器級消耗大量能量來保持32,768晶體振蕩。通常,MCU的輸入級可以直接與ULPPO的LVCMOS信號(通常為X在).因此,可以停用MCU的輸入級(旁路功能),以便節(jié)省的能量可以用于計算電表的系統(tǒng)功耗。此外,ULPPOs能夠同時同步多個IC。由于ULPPO的精度非常高,因此需要的時間同步更少,這也節(jié)省了系統(tǒng)功率。
當然,ULPPOs可用于任何需要小型化超低功耗32,768 kHz振蕩器的應用,如智能手機、平板電腦、GPS、健身手表、健康和保健應用、無線鍵盤、計時系統(tǒng)、計時應用、可穿戴設備、物聯網、家庭自動化等。由于32,768kHz有源晶體振蕩器的高度準確性,待機時間或甚至超高技術應用中的超高時間可以顯著增加,從而由于顯著降低的電池密集型同步周期可以節(jié)省大量系統(tǒng)功率。因此,與32,768kHz晶體相比,32,768kHz振蕩器是更好的選擇。超低功耗32,768kHz振蕩器具有不同的精度變化——也可參見ULPO-RB1和-RB2系列。
我們經驗豐富的專家可以迅速為這一高度創(chuàng)新的組件的集成設計提供盡可能最好的具體支持。
Time requirements in modern metering applications have massively increased in the last few years. The usual requirement in modern metering applications is a time offset of 1 hour after 7 years. It should also be possible for the operating temperature range of the application to comply with this value. 1 hour max. after 7 years corresponds to a frequency tolerance of ±16 ppm absolute at 32,768 kHz. It is no longer possible for conventional 32,768 kHz oscillating crystals to meet these requirements.
On the one hand, this is because 32,768 kHz are only available with a frequency tolerance of ±10ppm at +25°C, on the other hand, the temperature stability over a temperature range of -40/+85°C is more then -180 ppm. Moreover, ageing of approx. ±30 ppm after 10 years must be taken into account when calculating accuracy. In the worst case, a 32,768 kHz crystal has a maximum frequency stability of +40/-220 ppm (including adjustment at +25°C, temperature stability and ageing after 10 years). External circuit capacitance must be able to compensate any systematic frequency offset caused by the internal capacitance of the oscillator stage of the IC to be synchronised and by stray capacitance. The selection of a layout without external circuit capacitance for the 32,768 crystal involves a great risk because the accuracy of the 32,768 crystal can neither be corrected nor adjusted to suddenly changing PCB conditions during series production. Initially, the intersection angle for the 32,768 crystal was designed for optimal accuracy in wristwatches, and not for most of the applications for which it is used nowadays.
In order to meet the highly accurate time requirements, we as a clocking specialist offer the series ULPPO ultra low power 32,768 kHz oscillator. This oscillator can be operated with each voltage within a VDD range of 1.5 to 3.63 VDC. The specified current consumption is 0.99 µA. The temperature stability of ULPPOs is ±5 ppm over a temperature range of -40/+85°C. Frequency stability (delivery accuracy plus temperature stability) is ±10 ppm, and ageing after 20 years is ±2 ppm. Thus the maximum overall stability of ULPPOs is ±12 ppm including the ageing after 10 years. These are industry best parameters.
No external circuit capacitance is required for the circuiting of the ultra small housing (housing area: 1.2 mm2). The input stage of the IC installed in the ULPPO independently filters the supply voltage. Compared to crystals, ULPPOs save a lot of space on the printed circuit board so that the packing density can be increased, and smaller printed circuit boards can be designed. The adjustment of the amplitude further reduces the power consumption of the ULPPO.
For space calculations, both external circuit capacitances for a crystal on the printed circuit board must also be taken into account. With its two external circuit capacitances, even the smallest 32,768 kHz crystal requires more space on the PCB than ULPPOs do.
Moreover, very small 32,768 kHz crystals have very high resistances which usually cannot be safely overcome by the oscillator stages to be synchronised because the oscillator stages of the ICs or RTCs to be synchronised have very high tolerances as well. Therefore, sudden response time problems in the field might occur which can be ruled out with ULPPOs. Thus, the safe operation of the application is possible with ULPPOs under all circumstances.
Oscillator stages consume a lot of energy to keep a 32,768 crystal oscillating. Usually, the input stage of the MCU can be directly circuited with the LVCMOS signal of the ULPPO (usually Xin). Thus the input stage of the MCU can be deactivated (bypass function) so that the energy saved can be used for the calculation of the system power consumption of the meter. Moreover, ULPPOs are able to synchronise several ICs at a time. Due to the very high accuracy of the ULPPO, less time synchronisations are required, which also saves system power.
Of course, ULPPOs can be used in any applications which require miniaturised ultra low power 32,768 kHz oscillators such as smartphones, tablets, GPS, fitness watches, health and wellness applications, wireless keyboards, timing systems, timing applications, wearables, IoT, home automation, etc. Due to the high degree of accuracy of 32,768 kHz oscillators, the standby time or even the hypernation time in hypernation technology applications can be significantly increased so that a high amount of system power can be saved due to the significantly lower battery-intensive synchronisation cycles. Thus the 32,768 kHz oscillator is the better choice compared to 32,768 kHz crystals. Ultra low power 32,768 kHz oscillators are available with diverse accuracy variations – see also the ULPO-RB1 and -RB2 series.
Our highly experienced specialists can quickly provide the best possible specific support for the integration design of this highly innovative component.