Microchip 32.768K Clock Oscillator,Microchip公司通過不斷塑造品牌價值,以及不斷拓寬自身能力邊界,從而實現自我價值的最大化,秉持著樂意助人的精神,使得其在創新之路走得十分平坦,隨著行業發展的需求增長,Microchip晶振公司開始意識到新的趨勢到來,并傾盡所有專注于打磨自身的有源晶振產品,從品質到性能方面,追求產品品質達到極致的完美,并以高于用戶滿意度為最大的前提,好比這款精心打磨的時鐘振蕩器,一經推出市場便得到極好的評價。
只有當解決方案使用高精度、快速啟動的32.768kHz系統時鐘時,才能在休眠模式后重新建立超高速、省電的數據通信或全球定位。在基于休眠技術的電池供電解決方案中采用32.768kHz硅振蕩器可以節省50%以上的功率。彼得曼技術公司的專家解釋了原因32.768kHz硅振蕩器正在電池供電的休眠技術應用中占據主導地位,以及它們為用戶提供了哪些優勢。
許多終端產品采用休眠技術,包括可穿戴設備、面向商業、工業、汽車和物聯網應用的基于藍牙低能耗(BLE)的通信單元、GPS(商業和汽車)、M2M通信、個人追蹤器和醫療患者監護系統、物聯網、智能計量、家庭自動化、無線等等。
冬眠技術是如何工作的?
休眠技術主要用于定位應用和終端設備中,這些設備通過藍牙低能量(BLE)與單獨的接收器交換收集的數據。為了大大延長電池壽命,這些設備中的高耗電電路部分,如用于數據傳輸和定位的IC,會盡可能地進入省電睡眠模式。一旦用戶搜索到新的目的地,或者想要通過藍牙低能耗傳輸數據,這些休眠部件就必須被再次喚醒,并盡快恢復到高功率工作模式(圖1)。
極短的喚醒時間可節省50%的系統能源
為了實現高速、高能效的數據通信,32.768kHz系統時鐘必須非常精確,以便應用能夠高速運行圖1所示的過程,然后立即返回休眠模式。
不精確的系統時鐘會導致圖1所示的功耗過程根據需要重復多次,直到數據從發射器發送到接收器,比如從可穿戴設備發送到智能手機。這種重復增加了功率消耗,從而大大縮短了電池壽命。然而,當提供高精度32.768K有源晶振參考頻率時,發射器和接收器的系統時鐘之間的這些恒定功耗同步變得多余。超長的獨立運行時間是發射機單元取得市場成功的關鍵因素。不能長時間運行的病人監護設備很難被接受。用戶會奇怪為什么他需要反復給設備充電或更換電池,并且不會向他人推薦該產品,甚至會在網上發布負面評論。Microchip 32.768K Clock Oscillator.
高精度系統時鐘在GPS應用中還有另一個省電優勢:它可以延長休眠周期,同時仍然保持不到一秒的快速啟動。
32.768 kHz石英晶體和石英晶體振蕩器與32.768kHz超低功率振蕩器有何不同
由于石英切割,32.768 kHz石英晶體的溫度穩定性(與MHz石英晶體不同)不能通過改變切割角度來縮小。在-40°C至+85°C的溫度范圍內,32.768 kHz石英晶體的最精確溫度穩定性約為-180 ppm(圖2);相比之下,MHz石英晶體的折射率為15 ppm。